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The recent OpenSSH double-free vulnerability - CVE-2023-25136, created a lot of interest and confusion regarding OpenSSH's
custom security mechanisms - Sandbox and Privilege Separation. Until now, both of these security mechanisms were somewhat
unnoticed and only partially documented. The double-free vulnerability raised interest for those who were affected and those

controlling servers that use OpenSSH.

This blog post provides an in-depth analysis of OpenSSH's attack surface and security measures.
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OpenSSH's privilege separation mechanism has been around since March 2002, implemented more than 20 years ago.

The feature is designed to enhance the security of SSH servers by limiting the privileges of the SSH server process and separating it

from the user’s authentication and session processes.

The goal of privilege separation is to make sure pre-authentication attacks cannot compromise the root account even though other

parts of OpenSSH do run with root privileges.

Prior to the introduction of Privilege Separation, the OpenSSH server process had to run with elevated privileges to access system
resources required for authentication and session management. This elevated privilege level made the server process a high-value

target for attackers, who could potentially gain full control over a system by exploiting any vulnerability in the server process.

Any remote code execution vulnerability in the OpenSSH server process (sshd) could lead to an immediate remote root compromise

if it happened before authentication, subsequently giving the attacker full control over the machine running OpenSSH.
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Privilege Separation Mechanism

With Privilege Separation, the OpenSSH server process is split into two separate processes: one process that runs with elevated
privileges to handle system-level tasks such as network I/0, and another process that runs with reduced privileges to handle user

authentication.

When a user initiates an SSH connection to an OpenSSH server with Privilege Separation enabled, the server spawns two separate

processes to handle the incoming connection.

The first process, known as the privileged process, runs with elevated privileges and is responsible for handling network 1/0, such as

listening for incoming connections, managing network sockets, and managing pseudo-terminals.

The second process, known as the unprivileged process, runs with reduced privileges and is responsible for handling user
authentication. It is isolated from the privileged process and has limited access to system resources, such as file systems and

network interfaces.
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OpenSSH Privilege Separation - In-Depth Analysis

Privilege separation uses two processes: A privileged parent process monitors the progress of an unprivileged child process.

The child process is unprivileged. This is achieved by changing its uid/gid to an unused user (usually sshd) which has no login shell,

and restricting its file system access via chroot () to /var/empty. ItThe child process is the only process that handles network data.

The parent process determines whether the child process performed the authentication successfully.

Communication between the privileged and the unprivileged process is achieved via pipes. Shared memory stores state that can

not be otherwise exported and the child has to ask the privileged parent to determine whether authentication was successful.

If the child process gets corrupted and believes that the remote user has been authenticated, access will only be granted if the

parent has reached the same decision.

During authentication, the child process communicates with the user and the authentication agent to obtain the necessary
credentials for authentication. Once the child process has obtained the credentials, it sends them to the parent process for

validation.

The parent process then performs the actual authentication by using the credentials provided by the child process to authenticate
the user. If the authentication is successful, the parent process sends a message to the child process indicating that authentication
has succeeded. If the authentication fails, the parent process sends a message to the child process indicating that authentication
has failed.

The communication between the parent and child processes is done using Unix domain sockets, which are a form of inter-process

communication (IPC) mechanism.

The parent and child processes each have their own Unix domain socket, and they use these sockets to communicate with each

other.

By performing the authentication in the parent process, OpenSSH is able to ensure that sensitive authentication data never leaves
the privileged process, which provides an additional layer of security. Additionally, by using IPC to communicate between the parent
and child processes, OpenSSH is able to maintain separation between the two processes and prevent the child process from

interfering with the critical operation performed by the parent process.

During the pre-authentication phase, sshd will chroot () to /var/empty and change its privileges to the sshd user and its primary

group. sshd is a pseudo-account that is locked, is not used by other daemons, and does not contain a valid shell.

Given the following process listing:

uUID PID PPID C STIME TTY TIME COMMAND

root 957 9 0 09:14 ? 00:00:00 /usr/sbin/ss
hd -D
[listener] O
of 10-100

startups

root 1015 957 0 09:14 ? 00:00:00 sshd:
[accepted]

sshd 1016 1015 0 09:14 ? 00:00:00 sshd: [net]




® Process 957 is the sshd process listening for new connections.
® Process 1015 is the privileged monitor process.

® Process 1016 is the unprivileged authenticator-handler process.

The Privilege Separation mechanism is controlled by the UsepPrivilegeSeparation configuration key. By default, the key is set to the
most restrictive sandbox setting (even when the key is not specified) which means the pre-authentication unprivileged process is

subject to additional restrictions, which we will cover in the next section. The default location for this configuration file is

/etc/sshd_config

A sample sshd_config configuration file:

# Connection
Port 22
Protocol 2
UseDNS no
Compression no

# Authentication:

PubkeyAuthentication yes

PermitEmptyPasswords no

UsePAM yes

ChallengeResponseAuthentication yes

LoginGraceTime 60

UsePrivilegeSeparation sandbox # The relevant Privilege Separation config key ﬁj

What is the OpenSSH Sandbox?

The OpenSSH pre-authentication sandbox is a security mechanism first introduced in OpenSSH version 5.9 that aims to prevent
attackers from fully compromising a system after exploiting vulnerabilities during the pre-authentication phase. It creates a

restricted environment that limits the scope of potential vulnerabilities during the authentication phase of SSH connections.

It operates by launching an isolated environment using a combination of kernel security mechanisms, such as seccomp filtering and

namespace isolation - essentially restricting its capabilities to only a few pre-approved system calls.

When a user initiates an SSH connection to an OpenSSH server with the sandbox feature enabled, the server spawns a new process
that runs in a restricted environment, also known as the sandbox. The sandboxed process is created with limited privileges and

restricted access to system resources, including file systems and network interfaces.

OpenSSH Sandbox - In-Depth Analysis

OpenSSH has 7(!) different sandbox styles that are determined by the platform you compile it for and its kernel capabilities.

All of the different sandbox styles are centered around the concept of system call restriction - meaning that the sandboxed process

cannot use most of the system'’s services, like opening files, communicating over the network, etc.
Linux Sandbox

The OpenSSH configuration step (that runs just before the compilation step) checks for seccomp compatibility by checking whether

the kernel is configured with the SeccoMp_MODE_FILTER option.

This is what it looks like when configuring:

checking whether SECCOMP_MODE_FILTER is declared... yes

checking kernel for seccomp_filter support... yes



Checking the Ubuntu 22.04 LTS sshd daemon binary for the sandbox type, we see that it uses a seccomp filter, so we'll focus on
that:

> strings ./sshd | grep preparing

%s: preparing seccomp filter sandbox

Seccomp stands for secure computing mode and has been a feature of the Linux kernel since version 2.6.12, released in 2005. It is
used to filter and restrict the available system calls to userland processes, thus reducing the kernel surface exposed which

limits the attack surface for a privilege escalation.

This is done by having only the essential system calls needed for the application to function properly. The filter is expressed as a
Berkeley Packet Filter (BPF), as with socket filters, except that the data operated on is related to the system call being made: system

call number and the system call arguments.

We examine the sandbox-seccomp-filter.c file, and find the attachment of the Seccomp filter to the program in

ssh_sandbox_child() function, the seccomp profile used by OpenSSH is -

/* Syscall filtering set for preauth. */
static const struct sock filter preauth _insns[] = {
/* Syscalls to non-fatally deny */
#ifdef _ NR lstat
SC DENY(_NR lstat, EACCES),
#endif
#ifdef  NR lstat64
SC DENY(_NR lstat64, EACCES),
#endif
#ifdef _ NR fstat
SC DENY(_NR fstat, EACCES),
#endif

/* Syscalls to permit */
#ifdef _ NR brk
SC_ALLOW(_NR brk),
#endif
#ifdef ~ NR clock gettime
SC_ALLOW(__NR clock gettime),
#endif
#ifdef _ NR clock gettime64
SC_ALLOW(__ NR clock_gettime64),
#endif
#ifdef _ NR close
SC_ALLOW(_NR close),
#endif
#ifdef _ NR exit
SC_ALLOW(_NR exit),
#endif

#ifdef _ NR _mmap

SC_ALLOW_ARG_MASK(__NR mmap, 2, PROT_READ|PROT_WRITE|PROT_NONE),
#endif
#ifdef _ NR_mmap2

SC_ALLOW_ARG_MASK(__NR mmap2, 2, PROT_READ|PROT_WRITE|PROT_NONE),
#endif
#ifdef _ NR mprotect

SC_ALLOW_ARG_MASK(__NR mprotect, 2, PROT_READ|PROT_WRITE|PROT_NONE),
#endif

/* Default deny */ rD
BPF_STMT(BPF_RET+BPF_K, SECCOMP_FILTER FAIL),

It uses macros (SC_DENY/SC_ALLOW/SC_ALLOW_ARG_MASK) to create the BPF filters that are used as the Seccomp filter.

For example, we see that Istat() is explicitly denied to fail silently, close() is explicitly allowed, and mprotect() is allowed but must

pass an argument mask that denies unwanted arguments.



We can also see that the default for non-detailed syscalls is SECCOMP_FILTER_FAIL:

/* Linux seccomp filter sandbox */ [I—:l
#define SECCOMP_FILTER FAIL SECCOMP RET KILL

SECCOMP_RET_KILL results in the process exiting immediately without executing the system call.
This was our result in the previous blog post when trying to trigger the vulnerability, the seccomp sandbox would fail and exit the

process because writev() is not defined, and automatically leads to SECCOMP_RET_KILL.
Some of the major silently-denied syscalls [1]:

open - used to open a file and obtain a file descriptor that can be used to read from or write to the file. Removing this syscall heavily

decreases the attack surface since attackers won't be able to open arbitrary files.

openat - similar to open, but works relative to a given directory.

Some of the major explicitly-allowed syscalls that check for arguments [2]:

mmap - used to map a region of memory into the calling process's address space. Denying certain arguments will prevent attackers

from creating dangerous memory maps, and block some ROP shellcodes (see next section).

mprotect - used to modify the access permissions for a range of memory pages.

Some of the major explicitly-allowed syscalls without arguments checking [3]:

close - used to release a file descriptor previously obtained by opening a file using the open or openat system calls.

madvise - used to advise the kernel about the intended usage of a range of memory. Allows a program to communicate to the

operating system how it plans to use a particular region of memory, which can help the kernel optimize its management of that

memory.

mremap — used to change the size or location of an existing memory mapping.

munmap - used to remove a memory mapping that was previously established using the mmap syscall. When a program no longer

needs to access a memory mapping, it should call the munmap syscall to release the associated memory and remove the mapping.
write - Used to write data from a buffer to a file descriptor.

We'll first dive into the restriction for mmap:

#ifdef  NR mprotect
SC_ALLOW_ARG_MASK(__NR mprotect, 2, PROT_READ|PROT_WRITE|PROT_NONE), Tj
#endif

/* Allow if syscall argument contains only values in mask */
#define SC ALLOW ARG MASK( nr, arg nr, arg mask) \
BPF_JUMP(BPF_JMP+BPF JEQ+BPF K, ( nr), 0, 8), \
/* load, mask and test syscall argument, low word */ \
BPF STMT(BPF_LD+BPF W+BPF ABS, \
offsetof(struct seccomp data, args[(_arg nr)]) + ARG _LO OFFSET), \
BPF _STMT(BPF_ALU+BPF AND+BPF K, ~(( arg mask) & OxFFFFFFFF)), \
BPF JUMP(BPF _JMP+BPF JEQ+BPF K, 0, 0, 4), \
/* load, mask and test syscall argument, high word */ \
BPF STMT(BPF_LD+BPF _W+BPF ABS, \
offsetof(struct seccomp data, args[( _arg nr)]) + ARG HI OFFSET), \
BPF_STMT(BPF_ALU+BPF_AND+BPF K, \
~(((uint32 t)((uint64 t)( _arg mask) >> 32)) & OxFFFFFFFF)), \
BPF JUMP(BPF JMP+BPF JEQ+BPF K, 0, 0, 1), \
BPF_STMT(BPF_RET+BPF K, SECCOMP RET ALLOW), \
/* reload syscall number; all rules expect it in accumulator */ \
BPF _STMT(BPF_LD+BPF _W+BPF ABS, \ |
offsetof(struct seccomp data, nr))
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This verifies that the second argument to mmap is one of the following:

PROT_READ | PROT_WRITE|PROT_NONE

This prevents an attacker from creating an executable memory segment (PrROT_EXEC) which makes it harder for an attacker to
bypass the DEP/NX exploit mitigation.
Also, most shellcodes use the open() syscall to open new file descriptors, but the seccomp filter denies it, effectively minimizing a

lot of local privilege escalation possibilities since an attacker would have to find already-open file descriptors in order to exploit a

privilege escalation.
macOS Sandbox
Seccomp is a Linux Kernel feature, meaning it does not exist on machines running macOS

Let's inspect the sandbox-darwin.c file (Darwin is the core Unix system of macOS):

void
ssh _sandbox child(struct ssh sandbox *box)
{

char *errmsg;

struct rlimit rl_zero;

debug3("%s: starting Darwin sandbox", _ func_ );

if (sandbox_init(kSBXProfilePureComputation, SANDBOX NAMED,
&errmsg) == -1)
fatal("%s: sandbox init: %s", _ func__, errmsg);

/*

* The kSBXProfilePureComputation still allows sockets, so
* we must disable these using rlimit.
*/
ri_zero.rlim_cur = rl_zero.rlim max = 0;
if (setrlimit(RLIMIT FSIZE, &rl zero) == -1)
fatal("%s: setrlimit(RLIMIT FSIZE, { 0, 0 }): %s",
__func__, strerror(errno));
if (setrlimit(RLIMIT NOFILE, &rl zero) == -1)
fatal("%s: setrlimit(RLIMIT NOFILE, { 0, O }): %s",
__func__, strerror(errno));
if (setrlimit(RLIMIT _NPROC, &rl zero) == -1)
fatal("%s: setrlimit(RLIMIT NPROC, { 0, O }): %s",
_ func__, strerror(errno)); D

OS X has a feature called Seatbelt- its own sandbox kernel extension.
There are 5 documented profiles:

ksBxprofileNoInternet - TCP/IP networking is prohibited.
ksBxprofileNoNetwork — All sockets-based networking is prohibited.

ksBxProfileNowrite - File system writes are prohibited.

ksBxprofileNowriteExceptTemporary - File system writes are restricted to the temporary folder /var/tmp and the folder specified by

the confstr(3) configuration variable _CS_DARWIN_USER_TEMP_DIR.
ksBxprofilePureComputation - All operating system services are prohibited.

kSBXProfilePureComputation is the most restrictive mode.

When an application is launched with this profile, it is limited to accessing only the following resources:



The application’s own code and resources

System libraries and frameworks required for computation

Shared memory

Unix signals

The network loopback interface

The application is prevented from accessing the file system, other network interfaces, user data, hardware peripherals, or any other

resources that could potentially be used to modify the system or interfere with other applications.

We can see OpenSSH's sandbox uses this profile - essentially restricting all OS services and thus minimizing OpenSSH's attack

surface.
OpenBSD Sandbox
The OpenBSD operating system also has sandbox styles that are specific to it and cannot be used on other platforms.

The first one is systrace, which monitors and controls an application’s access to the system by enforcing access policies for system

calls, much like a primitive seccomp.

It uses a pseudo-device, /dev/systrace, which allows userland processes to control the behavior of systrace through an ioctl

interface.

It was deprecated in favor of pledge (originally named tame) that was released in 2015.

It has a concept named Promises, which are sets of permissions that a process can request in order to perform its operations.

A promise is a declaration made by a process to the system that it will only use a specific list of system calls, thus restricting its

syscall access to a predefined set of operations.

Promises can be requested by a process using the pledge() system call, and each promise is identified by a string that represents a

specific category of syscalls that the process is allowed to use.

Some examples of promises include rpath (which allows the process to read its own executable and linked shared libraries) and

inet (which permits network communication).

pledge can't filter file system paths or internet addresses. For example, if you enable a category like inet, your process will be able

to talk to any internet address.

We'll inspect the sandbox-pledge. c file:

void
ssh_sandbox_child(struct ssh sandbox *box)
{
if (pledge("stdio", NULL) == -1)
fatal _f("pledge()"); FD
}

We can see that OpenSSH uses the promise stdio.
This promise grants access to standard input/output, threads, and benign system calls.
Some of the major explicitly-allowed syscalls [4]:

close - used to release a file descriptor previously obtained by opening a file using the open or openat system calls.
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madvise - used to advise the kernel about the intended usage of a range of memory. Allows a program to communicate to the

operating system how it plans to use a particular region of memory, which can help the kernel optimize its management of that

memory.

mmap - used to map a region of memory into the calling process's address space.
mprotect - used to modify the access permissions for a range of memory pages.

munmap -used to remove a memory mapping that was previously established using the mmap syscall. When a program no longer

needs to access a memory mapping, it should call the munmap syscall to release the associated memory and remove the mapping.

pipe - used to create an inter-process communication channel, or “pipe”, between two related processes.
read - used to read data from a file or input stream.

recv - used to receive data from a connected socket.

send - used to send data over a connected socket.

write - used to write data from a buffer to a file descriptor.

This filter, much like the seccomp one, is very restrictive and denies any PROT_EXEC mappings or invoking open().

Conclusion - Don’t mess with the defaults!

OpenSSH's security mechanisms, namely Privilege Separation and Sandboxing, provide a robust and effective solution for

enhancing the security of the OpenSSH server. These mechanisms work together to minimize the attack surface and prevent

privilege escalation attacks by isolating and restricting access to critical system resources.
The one point of failure of those security mechanisms is the user configuration.

OpenSSH will enable all the restrictions by default (on a supported system), but a user can also choose to partially enable the

restriction mechanisms or disable them completely:

1. To only use the privilege separation (UsePrivilegeSeparation=yes)without sandboxing. This may allow network attackers to

fully compromise a system with privilege escalation.

2. Or to disable both the sandbox and privilege separation (UsePrivilegeSeparation=no).

This leads to an insecure system. Once code execution is achieved in the pre-authentication phase, attackers may fully compromise

the system.

By running parts of the SSH daemon in a separate, unprivileged process and by confining it to a sandboxed environment, OpenSSH
can prevent attackers from exploiting vulnerabilities in the SSH server (like CVE-2023-25136 Double-Free) to gain privileged access

to the system.

Following the research above, it is safe to say that at this time, organizations can deploy OpenSSH with confidence, knowing that the
risk of code execution and privilege escalation attacks has been considerably mitigated. However, be sure to stay up-to-date with

the latest version of OpenSSH and all of the latest security findings.

Stay up-to-date with JFrog Security Research

The security research team'’s findings and research play an important role in improving the JFrog Software Supply Chain Platform’s
software security capabilities. This manifests in the form of enhanced CVE metadata and remediation advice for developers,

DevOps and security teams in the |Frog Xray vulnerability database. And also as new security scanning capabilities used by JFrog


http://www.jfrog.com/xray

Xray.

Follow the latest discoveries and technical updates from the JFrog Security Research team in our research website, security research
blog posts and on Twitter at @JFrogSecurity.

Appendix A - OpenSSH sandbox full syscall lists

[1] Linux Sandbox - silently-denied syscalls: 1stat, lstat64, fstat, fstat64, fstatat64, open, openat, newfstatat, stat,

stat64, shmget, shmat, shmdt, ipc, statx

[2] Linux Sandbox - explicitly-allowed syscalls that check for arguments: mmap, mmap2, mprotect, socketcall, ioctl (only on

s390 architecture)

[3] Linux Sandbox - explicitly-allowed syscalls without arguments checking: brk, clock gettime, clock gettime64, close, exit,
exit_group, futext, futext_time64, geteuid, geteuid32, getpgid, getpid, getrandom, gettid, gettimeofday, getuid,
getuid32, madvise, mremap, munmap, nanosleep, clock _nanosleep, clock_nanosleep_time64, clock_gettime64, newselect,
ppoll, ppoll_time64, poll, pselect6, pselect6_time64, read, rt_sigprocmask, select, shutdown, sigprocmask, time,

write

[4] OpenBSD Sandbox - explicitly-allowed syscalls: exit_group, close, dup, dup2, dup3, fchdir, fstat, fsync, fdatasync,
ftruncate, getdents, getegid, getrandom, geteuid, getgid, getgroups, getitimer, getpgid, getpgrp, getpid, getppid,
getresgid, getresuid, getrlimit, getsid, wait4, gettimeofday, getuid, lseek, madvise, brk, arch_prctl, uname,
set_tid_address, clock _getres, clock gettime, clock _nanosleep, mmap (PROT_EXEC and weird flags aren't allowed),
mprotect (PROT_EXEC isn't allowed), msync, munmap, nanosleep, pipe, pipe2, read, readv, pread, recv, poll, recvfrom,
preadv, write, writev, pwrite, pwritev, select, send, sendto (only if addr is null), setitimer, shutdown, sigaction
(but SIGSYS is forbidden), sigaltstack, sigprocmask, sigreturn, sigsuspend, umask, socketpair, ioctl(FIONREAD),

ioct1(FIONBIO), ioctl(FIOCLEX), ioctl(FIONCLEX), fcntl(F_GETFD), fcntl(F_SETFD), fcntl(F_GETFL), fecntl(F_SETFL)
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